If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2+43n-1598=0
a = 3; b = 43; c = -1598;
Δ = b2-4ac
Δ = 432-4·3·(-1598)
Δ = 21025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{21025}=145$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(43)-145}{2*3}=\frac{-188}{6} =-31+1/3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(43)+145}{2*3}=\frac{102}{6} =17 $
| x-7x=864 | | 36=3(z−82) | | 85x=115 | | 9x=2x+6 | | 5^x=225 | | -15f-2f+3f-4=94 | | y/4+ 3=6 | | g/4+ 9=11 | | 28+.40x=75.2 | | 5s^2+35s+42=0 | | -5+76n=146 | | 5x-2(x+7)=4x-2 | | 50-18.5=5.5x+7.75x | | 9-(9-3h)=-15 | | 7q+3(4-q)=31 | | 15/22=18/k | | 3x-1/8=x+9/4 | | 6(r/3+2)-9=2 | | 15/22=18/kk= | | 90-2x=62 | | a^2-16a-52=0 | | 3(3t-4)-4t=-22 | | 5(9x+12)=15 | | x/4+12=-3 | | 3(2x+1)+7x=55 | | X=5,y=3 | | -4d-10=10 | | 2(4x-7)-5(3x-3)=x-4(2x+3) | | 8b=6b-14 | | 2t-8/3=5/6 | | 36=6x+2(-2x+13) | | -8.6x+83.5=-0.2x+7.9 |